Mechanistic insights into the selective cyclization of indolines with alkynes and alkenes to produce six- and seven-membered 1,7-fused indolines via Rh(iii) catalysis: a theoretical study.

نویسندگان

  • Lingli Han
  • Xinyu Zhang
  • Xingdong Wang
  • Fengyue Zhao
  • Shaojing Liu
  • Tao Liu
چکیده

The coupling reaction mechanisms of the Rh(iii)-catalyzed redox-neutral C7-selective aryl C-H functionalization of indolines with alkynes and alkenes have been theoretically investigated with the aid of the density functional theory (DFT) calculations. Our calculation results indicate that the active catalyst in this system is the cationic species [Cp*Rh(OAc)]+ (2cat) instead of the neutral species Cp*Rh(OAc)2 (1cat). The origin of forming different products associated with using different coupling partners was also rationalized in detail. For the coupling reaction of N-methoxycarbamoyl-protected indoline (1a) with alkyl alkyne (4a), the electronic effect plays a dominant role and causes the six-membered ring product to be the main product. For the coupling reaction of 1a with aryl alkyne (2a), through the replacement of alkyl alkyne with aryl alkyne, the steric effect serves as a crucial factor, compared with the electronic effect, and leads to the main seven-membered ring product. For the coupling reaction of 1a with acrylate (6a), the chemoselectivity is dictated by the steric effect and electronic effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones.

A regioselective synthesis of substituted pyrroloquinolinones via a ruthenium-catalyzed oxidative cyclization of substituted N-carbamoyl indolines with alkynes is described. The cyclization reaction was compatible with various symmetrical and unsymmetrical alkynes including substituted propiolates. Later, we performed the aromatization of pyrroloquinolinones into indole derivatives in the prese...

متن کامل

Copper-catalyzed radical cascade cyclization for the synthesis of phosphorated indolines.

A novel and convenient approach to the synthesis of various phosphorated indolines via a copper-catalyzed radical cascade cyclization reaction has been developed. The reaction employs cheap copper as the catalyst and K2S2O8 as the oxidant under mild conditions. Various alkenes and P-radical precursors are compatible with this transformation. Preliminary mechanistic studies reveal that the addit...

متن کامل

Stereoselective synthesis of tetracyclic indolines via gold-catalyzed cascade cyclization reactions.

A reliable synthetic route to fused polycyclic indolines is documented by the development of a stereoselective gold catalyzed cascade cyclization of indole propargylic alcohols.

متن کامل

Palladium-catalyzed selective aminoamidation and aminocyanation of alkenes using isonitrile as amide and cyanide sources.

A mild and efficient palladium-catalyzed intermolecular aminoamidation and aminocyanation reaction of alkenes with a broad substrate scope has been developed. This cyclization process provides a valuable synthetic tool for obtaining substituted indolines, tetrahydroisoquinolines and pyrrolidines in good to excellent yields.

متن کامل

Rhodium catalyzed diastereoselective synthesis of 2,2,3,3-tetrasubstituted indolines from N-sulfonyl-1,2,3-triazoles and ortho-vinylanilines

An efficient diastereoselective rhodium catalyzed synthesis of indolines possessing two contiguous tetrasubstituted carbon centers has been achieved with good to excellent yields using ortho-vinylanilines and iminocarbenes derived from N-sulfonyl-1,2,3-triazoles. The reaction affords excellent cisdiastereoselectivity through the initial formation of a N-ylide followed by intramolecular trapping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 15 18  شماره 

صفحات  -

تاریخ انتشار 2017